Metamath Proof Explorer


Theorem excomw

Description: Weak version of excom and biconditional form of excomimw . Uses only Tarski's FOL axiom schemes. (Contributed by TM, 24-Jan-2026)

Ref Expression
Hypotheses excomw.1
|- ( x = w -> ( ph <-> ps ) )
excomw.2
|- ( y = z -> ( ph <-> ch ) )
Assertion excomw
|- ( E. x E. y ph <-> E. y E. x ph )

Proof

Step Hyp Ref Expression
1 excomw.1
 |-  ( x = w -> ( ph <-> ps ) )
2 excomw.2
 |-  ( y = z -> ( ph <-> ch ) )
3 1 excomimw
 |-  ( E. x E. y ph -> E. y E. x ph )
4 2 excomimw
 |-  ( E. y E. x ph -> E. x E. y ph )
5 3 4 impbii
 |-  ( E. x E. y ph <-> E. y E. x ph )