Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | excxor | |- ( ( ph \/_ ps ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor | |- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) | |
| 2 | xor | |- ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) ) | |
| 3 | ancom | |- ( ( ps /\ -. ph ) <-> ( -. ph /\ ps ) ) | |
| 4 | 3 | orbi2i | |- ( ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) ) | 
| 5 | 1 2 4 | 3bitri | |- ( ( ph \/_ ps ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) ) |