Metamath Proof Explorer


Theorem exexw

Description: Existential quantification is idempotent. Weak version of bj-exexbiex , requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024)

Ref Expression
Hypothesis exexw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion exexw
|- ( E. x ph <-> E. x E. x ph )

Proof

Step Hyp Ref Expression
1 exexw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 1 notbid
 |-  ( x = y -> ( -. ph <-> -. ps ) )
3 2 hba1w
 |-  ( A. x -. ph -> A. x A. x -. ph )
4 2 spw
 |-  ( A. x -. ph -> -. ph )
5 4 alimi
 |-  ( A. x A. x -. ph -> A. x -. ph )
6 3 5 impbii
 |-  ( A. x -. ph <-> A. x A. x -. ph )
7 6 notbii
 |-  ( -. A. x -. ph <-> -. A. x A. x -. ph )
8 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
9 2exnaln
 |-  ( E. x E. x ph <-> -. A. x A. x -. ph )
10 7 8 9 3bitr4i
 |-  ( E. x ph <-> E. x E. x ph )