Metamath Proof Explorer


Theorem exidcl

Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypothesis exidcl.1
|- X = ran G
Assertion exidcl
|- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X )

Proof

Step Hyp Ref Expression
1 exidcl.1
 |-  X = ran G
2 rngopidOLD
 |-  ( G e. ( Magma i^i ExId ) -> ran G = dom dom G )
3 1 2 eqtrid
 |-  ( G e. ( Magma i^i ExId ) -> X = dom dom G )
4 3 eleq2d
 |-  ( G e. ( Magma i^i ExId ) -> ( A e. X <-> A e. dom dom G ) )
5 3 eleq2d
 |-  ( G e. ( Magma i^i ExId ) -> ( B e. X <-> B e. dom dom G ) )
6 4 5 anbi12d
 |-  ( G e. ( Magma i^i ExId ) -> ( ( A e. X /\ B e. X ) <-> ( A e. dom dom G /\ B e. dom dom G ) ) )
7 6 pm5.32i
 |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) <-> ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) )
8 inss1
 |-  ( Magma i^i ExId ) C_ Magma
9 8 sseli
 |-  ( G e. ( Magma i^i ExId ) -> G e. Magma )
10 eqid
 |-  dom dom G = dom dom G
11 10 clmgmOLD
 |-  ( ( G e. Magma /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G )
12 9 11 syl3an1
 |-  ( ( G e. ( Magma i^i ExId ) /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G )
13 12 3expb
 |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) -> ( A G B ) e. dom dom G )
14 7 13 sylbi
 |-  ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. dom dom G )
15 14 3impb
 |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. dom dom G )
16 3 3ad2ant1
 |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> X = dom dom G )
17 15 16 eleqtrrd
 |-  ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X )