Step |
Hyp |
Ref |
Expression |
1 |
|
exidcl.1 |
|- X = ran G |
2 |
|
rngopidOLD |
|- ( G e. ( Magma i^i ExId ) -> ran G = dom dom G ) |
3 |
1 2
|
eqtrid |
|- ( G e. ( Magma i^i ExId ) -> X = dom dom G ) |
4 |
3
|
eleq2d |
|- ( G e. ( Magma i^i ExId ) -> ( A e. X <-> A e. dom dom G ) ) |
5 |
3
|
eleq2d |
|- ( G e. ( Magma i^i ExId ) -> ( B e. X <-> B e. dom dom G ) ) |
6 |
4 5
|
anbi12d |
|- ( G e. ( Magma i^i ExId ) -> ( ( A e. X /\ B e. X ) <-> ( A e. dom dom G /\ B e. dom dom G ) ) ) |
7 |
6
|
pm5.32i |
|- ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) <-> ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) ) |
8 |
|
inss1 |
|- ( Magma i^i ExId ) C_ Magma |
9 |
8
|
sseli |
|- ( G e. ( Magma i^i ExId ) -> G e. Magma ) |
10 |
|
eqid |
|- dom dom G = dom dom G |
11 |
10
|
clmgmOLD |
|- ( ( G e. Magma /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) |
12 |
9 11
|
syl3an1 |
|- ( ( G e. ( Magma i^i ExId ) /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) |
13 |
12
|
3expb |
|- ( ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) -> ( A G B ) e. dom dom G ) |
14 |
7 13
|
sylbi |
|- ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. dom dom G ) |
15 |
14
|
3impb |
|- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. dom dom G ) |
16 |
3
|
3ad2ant1 |
|- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> X = dom dom G ) |
17 |
15 16
|
eleqtrrd |
|- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |