| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exidres.1 |
|- X = ran G |
| 2 |
|
exidres.2 |
|- U = ( GId ` G ) |
| 3 |
|
exidres.3 |
|- H = ( G |` ( Y X. Y ) ) |
| 4 |
3
|
dmeqi |
|- dom H = dom ( G |` ( Y X. Y ) ) |
| 5 |
|
xpss12 |
|- ( ( Y C_ X /\ Y C_ X ) -> ( Y X. Y ) C_ ( X X. X ) ) |
| 6 |
5
|
anidms |
|- ( Y C_ X -> ( Y X. Y ) C_ ( X X. X ) ) |
| 7 |
1
|
opidon2OLD |
|- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |
| 8 |
|
fof |
|- ( G : ( X X. X ) -onto-> X -> G : ( X X. X ) --> X ) |
| 9 |
|
fdm |
|- ( G : ( X X. X ) --> X -> dom G = ( X X. X ) ) |
| 10 |
7 8 9
|
3syl |
|- ( G e. ( Magma i^i ExId ) -> dom G = ( X X. X ) ) |
| 11 |
10
|
sseq2d |
|- ( G e. ( Magma i^i ExId ) -> ( ( Y X. Y ) C_ dom G <-> ( Y X. Y ) C_ ( X X. X ) ) ) |
| 12 |
6 11
|
imbitrrid |
|- ( G e. ( Magma i^i ExId ) -> ( Y C_ X -> ( Y X. Y ) C_ dom G ) ) |
| 13 |
12
|
imp |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> ( Y X. Y ) C_ dom G ) |
| 14 |
|
ssdmres |
|- ( ( Y X. Y ) C_ dom G <-> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
| 15 |
13 14
|
sylib |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
| 16 |
4 15
|
eqtrid |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom H = ( Y X. Y ) ) |
| 17 |
16
|
dmeqd |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom dom H = dom ( Y X. Y ) ) |
| 18 |
|
dmxpid |
|- dom ( Y X. Y ) = Y |
| 19 |
17 18
|
eqtrdi |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> dom dom H = Y ) |
| 20 |
19
|
eleq2d |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) -> ( U e. dom dom H <-> U e. Y ) ) |
| 21 |
20
|
biimp3ar |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> U e. dom dom H ) |
| 22 |
|
ssel2 |
|- ( ( Y C_ X /\ x e. Y ) -> x e. X ) |
| 23 |
1 2
|
cmpidelt |
|- ( ( G e. ( Magma i^i ExId ) /\ x e. X ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 24 |
22 23
|
sylan2 |
|- ( ( G e. ( Magma i^i ExId ) /\ ( Y C_ X /\ x e. Y ) ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 25 |
24
|
anassrs |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ x e. Y ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 26 |
25
|
adantrl |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 27 |
3
|
oveqi |
|- ( U H x ) = ( U ( G |` ( Y X. Y ) ) x ) |
| 28 |
|
ovres |
|- ( ( U e. Y /\ x e. Y ) -> ( U ( G |` ( Y X. Y ) ) x ) = ( U G x ) ) |
| 29 |
27 28
|
eqtrid |
|- ( ( U e. Y /\ x e. Y ) -> ( U H x ) = ( U G x ) ) |
| 30 |
29
|
eqeq1d |
|- ( ( U e. Y /\ x e. Y ) -> ( ( U H x ) = x <-> ( U G x ) = x ) ) |
| 31 |
3
|
oveqi |
|- ( x H U ) = ( x ( G |` ( Y X. Y ) ) U ) |
| 32 |
|
ovres |
|- ( ( x e. Y /\ U e. Y ) -> ( x ( G |` ( Y X. Y ) ) U ) = ( x G U ) ) |
| 33 |
31 32
|
eqtrid |
|- ( ( x e. Y /\ U e. Y ) -> ( x H U ) = ( x G U ) ) |
| 34 |
33
|
ancoms |
|- ( ( U e. Y /\ x e. Y ) -> ( x H U ) = ( x G U ) ) |
| 35 |
34
|
eqeq1d |
|- ( ( U e. Y /\ x e. Y ) -> ( ( x H U ) = x <-> ( x G U ) = x ) ) |
| 36 |
30 35
|
anbi12d |
|- ( ( U e. Y /\ x e. Y ) -> ( ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 37 |
36
|
adantl |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 38 |
26 37
|
mpbird |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ ( U e. Y /\ x e. Y ) ) -> ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 39 |
38
|
anassrs |
|- ( ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ U e. Y ) /\ x e. Y ) -> ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 40 |
39
|
ralrimiva |
|- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X ) /\ U e. Y ) -> A. x e. Y ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 41 |
40
|
3impa |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. Y ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 42 |
13
|
3adant3 |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( Y X. Y ) C_ dom G ) |
| 43 |
42 14
|
sylib |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom ( G |` ( Y X. Y ) ) = ( Y X. Y ) ) |
| 44 |
4 43
|
eqtrid |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom H = ( Y X. Y ) ) |
| 45 |
44
|
dmeqd |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom dom H = dom ( Y X. Y ) ) |
| 46 |
45 18
|
eqtrdi |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> dom dom H = Y ) |
| 47 |
41 46
|
raleqtrrdv |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 48 |
21 47
|
jca |
|- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |