Metamath Proof Explorer


Theorem eximal

Description: An equivalence between an implication with an existentially quantified antecedent and an implication with a universally quantified consequent. An interesting case is when the same formula is substituted for both ph and ps , since then both implications express a type of nonfreeness. See also alimex . (Contributed by BJ, 12-May-2019)

Ref Expression
Assertion eximal
|- ( ( E. x ph -> ps ) <-> ( -. ps -> A. x -. ph ) )

Proof

Step Hyp Ref Expression
1 df-ex
 |-  ( E. x ph <-> -. A. x -. ph )
2 1 imbi1i
 |-  ( ( E. x ph -> ps ) <-> ( -. A. x -. ph -> ps ) )
3 con1b
 |-  ( ( -. A. x -. ph -> ps ) <-> ( -. ps -> A. x -. ph ) )
4 2 3 bitri
 |-  ( ( E. x ph -> ps ) <-> ( -. ps -> A. x -. ph ) )