Metamath Proof Explorer


Theorem eximd

Description: Deduction form of Theorem 19.22 of Margaris p. 90, see exim . (Contributed by NM, 29-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses eximd.1
|- F/ x ph
eximd.2
|- ( ph -> ( ps -> ch ) )
Assertion eximd
|- ( ph -> ( E. x ps -> E. x ch ) )

Proof

Step Hyp Ref Expression
1 eximd.1
 |-  F/ x ph
2 eximd.2
 |-  ( ph -> ( ps -> ch ) )
3 1 nf5ri
 |-  ( ph -> A. x ph )
4 3 2 eximdh
 |-  ( ph -> ( E. x ps -> E. x ch ) )