Metamath Proof Explorer


Theorem eximdh

Description: Deduction from Theorem 19.22 of Margaris p. 90. (Contributed by NM, 20-May-1996)

Ref Expression
Hypotheses eximdh.1
|- ( ph -> A. x ph )
eximdh.2
|- ( ph -> ( ps -> ch ) )
Assertion eximdh
|- ( ph -> ( E. x ps -> E. x ch ) )

Proof

Step Hyp Ref Expression
1 eximdh.1
 |-  ( ph -> A. x ph )
2 eximdh.2
 |-  ( ph -> ( ps -> ch ) )
3 2 aleximi
 |-  ( A. x ph -> ( E. x ps -> E. x ch ) )
4 1 3 syl
 |-  ( ph -> ( E. x ps -> E. x ch ) )