Metamath Proof Explorer


Theorem eximii

Description: Inference associated with eximi . (Contributed by BJ, 3-Feb-2018)

Ref Expression
Hypotheses eximii.1
|- E. x ph
eximii.2
|- ( ph -> ps )
Assertion eximii
|- E. x ps

Proof

Step Hyp Ref Expression
1 eximii.1
 |-  E. x ph
2 eximii.2
 |-  ( ph -> ps )
3 2 eximi
 |-  ( E. x ph -> E. x ps )
4 1 3 ax-mp
 |-  E. x ps