Metamath Proof Explorer


Theorem exinst

Description: Existential Instantiation. Virtual deduction form of exlimexi . (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exinst.1
|- ( ps -> A. x ps )
exinst.2
|- (. E. x ph ,. ph ->. ps ).
Assertion exinst
|- ( E. x ph -> ps )

Proof

Step Hyp Ref Expression
1 exinst.1
 |-  ( ps -> A. x ps )
2 exinst.2
 |-  (. E. x ph ,. ph ->. ps ).
3 2 dfvd2i
 |-  ( E. x ph -> ( ph -> ps ) )
4 1 3 exlimexi
 |-  ( E. x ph -> ps )