Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993) (Proof shortened by BJ, 16-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exintr | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancl | |- ( ( ph -> ps ) -> ( ph -> ( ph /\ ps ) ) ) |
|
| 2 | 1 | aleximi | |- ( A. x ( ph -> ps ) -> ( E. x ph -> E. x ( ph /\ ps ) ) ) |