Metamath Proof Explorer


Theorem exists1

Description: Two ways to express "exactly one thing exists". The left-hand side requires only one variable to express this. Both sides are false in set theory, see Theorem dtru . (Contributed by NM, 5-Apr-2004) (Proof shortened by BJ, 7-Oct-2022)

Ref Expression
Assertion exists1
|- ( E! x x = x <-> A. x x = y )

Proof

Step Hyp Ref Expression
1 equid
 |-  x = x
2 1 bitru
 |-  ( x = x <-> T. )
3 2 eubii
 |-  ( E! x x = x <-> E! x T. )
4 euae
 |-  ( E! x T. <-> A. x x = y )
5 3 4 bitri
 |-  ( E! x x = x <-> A. x x = y )