Metamath Proof Explorer


Theorem exlimd

Description: Deduction form of Theorem 19.9 of Margaris p. 89. (Contributed by NM, 23-Jan-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 12-Jan-2018)

Ref Expression
Hypotheses exlimd.1
|- F/ x ph
exlimd.2
|- F/ x ch
exlimd.3
|- ( ph -> ( ps -> ch ) )
Assertion exlimd
|- ( ph -> ( E. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 exlimd.1
 |-  F/ x ph
2 exlimd.2
 |-  F/ x ch
3 exlimd.3
 |-  ( ph -> ( ps -> ch ) )
4 1 3 eximd
 |-  ( ph -> ( E. x ps -> E. x ch ) )
5 2 19.9
 |-  ( E. x ch <-> ch )
6 4 5 syl6ib
 |-  ( ph -> ( E. x ps -> ch ) )