Metamath Proof Explorer


Theorem exlimdd

Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017) (Proof shortened by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1
|- F/ x ph
exlimdd.2
|- F/ x ch
exlimdd.3
|- ( ph -> E. x ps )
exlimdd.4
|- ( ( ph /\ ps ) -> ch )
Assertion exlimdd
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 exlimdd.1
 |-  F/ x ph
2 exlimdd.2
 |-  F/ x ch
3 exlimdd.3
 |-  ( ph -> E. x ps )
4 exlimdd.4
 |-  ( ( ph /\ ps ) -> ch )
5 4 ex
 |-  ( ph -> ( ps -> ch ) )
6 1 2 3 5 exlimimdd
 |-  ( ph -> ch )