Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017) (Proof shortened by Wolf Lammen, 3-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exlimdd.1 | |- F/ x ph |
|
exlimdd.2 | |- F/ x ch |
||
exlimdd.3 | |- ( ph -> E. x ps ) |
||
exlimdd.4 | |- ( ( ph /\ ps ) -> ch ) |
||
Assertion | exlimdd | |- ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimdd.1 | |- F/ x ph |
|
2 | exlimdd.2 | |- F/ x ch |
|
3 | exlimdd.3 | |- ( ph -> E. x ps ) |
|
4 | exlimdd.4 | |- ( ( ph /\ ps ) -> ch ) |
|
5 | 4 | ex | |- ( ph -> ( ps -> ch ) ) |
6 | 1 2 3 5 | exlimimdd | |- ( ph -> ch ) |