Metamath Proof Explorer


Theorem exlimddv

Description: Existential elimination rule of natural deduction (Rule C, explained in exlimiv ). (Contributed by Mario Carneiro, 15-Jun-2016)

Ref Expression
Hypotheses exlimddv.1
|- ( ph -> E. x ps )
exlimddv.2
|- ( ( ph /\ ps ) -> ch )
Assertion exlimddv
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 exlimddv.1
 |-  ( ph -> E. x ps )
2 exlimddv.2
 |-  ( ( ph /\ ps ) -> ch )
3 2 ex
 |-  ( ph -> ( ps -> ch ) )
4 3 exlimdv
 |-  ( ph -> ( E. x ps -> ch ) )
5 1 4 mpd
 |-  ( ph -> ch )