Metamath Proof Explorer


Theorem exlimdh

Description: Deduction form of Theorem 19.9 of Margaris p. 89. (Contributed by NM, 28-Jan-1997)

Ref Expression
Hypotheses exlimdh.1
|- ( ph -> A. x ph )
exlimdh.2
|- ( ch -> A. x ch )
exlimdh.3
|- ( ph -> ( ps -> ch ) )
Assertion exlimdh
|- ( ph -> ( E. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 exlimdh.1
 |-  ( ph -> A. x ph )
2 exlimdh.2
 |-  ( ch -> A. x ch )
3 exlimdh.3
 |-  ( ph -> ( ps -> ch ) )
4 1 nf5i
 |-  F/ x ph
5 2 nf5i
 |-  F/ x ch
6 4 5 3 exlimd
 |-  ( ph -> ( E. x ps -> ch ) )