Metamath Proof Explorer


Theorem exlimdv

Description: Deduction form of Theorem 19.23 of Margaris p. 90, see 19.23 . (Contributed by NM, 27-Apr-1994) Remove dependencies on ax-6 , ax-7 . (Revised by Wolf Lammen, 4-Dec-2017)

Ref Expression
Hypothesis exlimdv.1
|- ( ph -> ( ps -> ch ) )
Assertion exlimdv
|- ( ph -> ( E. x ps -> ch ) )

Proof

Step Hyp Ref Expression
1 exlimdv.1
 |-  ( ph -> ( ps -> ch ) )
2 1 eximdv
 |-  ( ph -> ( E. x ps -> E. x ch ) )
3 ax5e
 |-  ( E. x ch -> ch )
4 2 3 syl6
 |-  ( ph -> ( E. x ps -> ch ) )