Metamath Proof Explorer


Theorem exlimexi

Description: Inference similar to Theorem 19.23 of Margaris p. 90. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses exlimexi.1
|- ( ps -> A. x ps )
exlimexi.2
|- ( E. x ph -> ( ph -> ps ) )
Assertion exlimexi
|- ( E. x ph -> ps )

Proof

Step Hyp Ref Expression
1 exlimexi.1
 |-  ( ps -> A. x ps )
2 exlimexi.2
 |-  ( E. x ph -> ( ph -> ps ) )
3 hbe1
 |-  ( E. x ph -> A. x E. x ph )
4 3 1 2 exlimdh
 |-  ( E. x ph -> ( E. x ph -> ps ) )
5 4 pm2.43i
 |-  ( E. x ph -> ps )