Metamath Proof Explorer


Theorem exlimih

Description: Inference associated with 19.23 . See exlimiv for a version with a disjoint variable condition requiring fewer axioms. (Contributed by NM, 10-Jan-1993) (Proof shortened by Andrew Salmon, 13-May-2011) (Proof shortened by Wolf Lammen, 1-Jan-2018)

Ref Expression
Hypotheses exlimih.1
|- ( ps -> A. x ps )
exlimih.2
|- ( ph -> ps )
Assertion exlimih
|- ( E. x ph -> ps )

Proof

Step Hyp Ref Expression
1 exlimih.1
 |-  ( ps -> A. x ps )
2 exlimih.2
 |-  ( ph -> ps )
3 1 nf5i
 |-  F/ x ps
4 3 2 exlimi
 |-  ( E. x ph -> ps )