Metamath Proof Explorer
Description: Inference (Rule C) associated with exlimiv . (Contributed by BJ, 19-Dec-2020)
|
|
Ref |
Expression |
|
Hypotheses |
exlimiv.1 |
|- ( ph -> ps ) |
|
|
exlimiiv.2 |
|- E. x ph |
|
Assertion |
exlimiiv |
|- ps |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exlimiv.1 |
|- ( ph -> ps ) |
| 2 |
|
exlimiiv.2 |
|- E. x ph |
| 3 |
1
|
exlimiv |
|- ( E. x ph -> ps ) |
| 4 |
2 3
|
ax-mp |
|- ps |