Metamath Proof Explorer


Theorem exlimimdd

Description: Existential elimination rule of natural deduction. (Contributed by ML, 17-Jul-2020) Shorten exlimdd . (Revised by Wolf Lammen, 3-Sep-2023)

Ref Expression
Hypotheses exlimdd.1
|- F/ x ph
exlimdd.2
|- F/ x ch
exlimdd.3
|- ( ph -> E. x ps )
exlimimdd.4
|- ( ph -> ( ps -> ch ) )
Assertion exlimimdd
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 exlimdd.1
 |-  F/ x ph
2 exlimdd.2
 |-  F/ x ch
3 exlimdd.3
 |-  ( ph -> E. x ps )
4 exlimimdd.4
 |-  ( ph -> ( ps -> ch ) )
5 1 2 4 exlimd
 |-  ( ph -> ( E. x ps -> ch ) )
6 3 5 mpd
 |-  ( ph -> ch )