| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exmid2.1 |  |-  ( ( ps /\ ph ) -> ch ) | 
						
							| 2 |  | exmid2.2 |  |-  ( ( -. ps /\ et ) -> ch ) | 
						
							| 3 |  | simpl |  |-  ( ( ph /\ et ) -> ph ) | 
						
							| 4 | 3 | anim2i |  |-  ( ( ps /\ ( ph /\ et ) ) -> ( ps /\ ph ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( ( ph /\ et ) /\ ps ) -> ( ps /\ ph ) ) | 
						
							| 6 | 5 1 | syl |  |-  ( ( ( ph /\ et ) /\ ps ) -> ch ) | 
						
							| 7 |  | simpr |  |-  ( ( ph /\ et ) -> et ) | 
						
							| 8 | 7 | anim2i |  |-  ( ( -. ps /\ ( ph /\ et ) ) -> ( -. ps /\ et ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( ( ph /\ et ) /\ -. ps ) -> ( -. ps /\ et ) ) | 
						
							| 10 | 9 2 | syl |  |-  ( ( ( ph /\ et ) /\ -. ps ) -> ch ) | 
						
							| 11 | 6 10 | pm2.61dan |  |-  ( ( ph /\ et ) -> ch ) |