Metamath Proof Explorer


Theorem exmidd

Description: Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Assertion exmidd
|- ( ph -> ( ps \/ -. ps ) )

Proof

Step Hyp Ref Expression
1 exmid
 |-  ( ps \/ -. ps )
2 1 a1i
 |-  ( ph -> ( ps \/ -. ps ) )