Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | exmoeub | |- ( E. x ph -> ( E* x ph <-> E! x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
2 | 1 | baibr | |- ( E. x ph -> ( E* x ph <-> E! x ph ) ) |