Description: Existence implies that uniqueness is equivalent to unique existence. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exmoeub | |- ( E. x ph -> ( E* x ph <-> E! x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
| 2 | 1 | baibr | |- ( E. x ph -> ( E* x ph <-> E! x ph ) ) |