Metamath Proof Explorer


Theorem exopxfr

Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis exopxfr.1
|- ( x = <. y , z >. -> ( ph <-> ps ) )
Assertion exopxfr
|- ( E. x e. ( _V X. _V ) ph <-> E. y E. z ps )

Proof

Step Hyp Ref Expression
1 exopxfr.1
 |-  ( x = <. y , z >. -> ( ph <-> ps ) )
2 1 rexxp
 |-  ( E. x e. ( _V X. _V ) ph <-> E. y e. _V E. z e. _V ps )
3 rexv
 |-  ( E. y e. _V E. z e. _V ps <-> E. y E. z e. _V ps )
4 rexv
 |-  ( E. z e. _V ps <-> E. z ps )
5 4 exbii
 |-  ( E. y E. z e. _V ps <-> E. y E. z ps )
6 2 3 5 3bitri
 |-  ( E. x e. ( _V X. _V ) ph <-> E. y E. z ps )