Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014) (Proof shortened by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | exopxfr.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
Assertion | exopxfr | |- ( E. x e. ( _V X. _V ) ph <-> E. y E. z ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exopxfr.1 | |- ( x = <. y , z >. -> ( ph <-> ps ) ) |
|
2 | 1 | rexxp | |- ( E. x e. ( _V X. _V ) ph <-> E. y e. _V E. z e. _V ps ) |
3 | rexv | |- ( E. y e. _V E. z e. _V ps <-> E. y E. z e. _V ps ) |
|
4 | rexv | |- ( E. z e. _V ps <-> E. z ps ) |
|
5 | 4 | exbii | |- ( E. y E. z e. _V ps <-> E. y E. z ps ) |
6 | 2 3 5 | 3bitri | |- ( E. x e. ( _V X. _V ) ph <-> E. y E. z ps ) |