Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
expval |
|- ( ( A e. CC /\ 0 e. ZZ ) -> ( A ^ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( x. , ( NN X. { A } ) ) ` 0 ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u 0 ) ) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. CC -> ( A ^ 0 ) = if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( x. , ( NN X. { A } ) ) ` 0 ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u 0 ) ) ) ) ) |
4 |
|
eqid |
|- 0 = 0 |
5 |
4
|
iftruei |
|- if ( 0 = 0 , 1 , if ( 0 < 0 , ( seq 1 ( x. , ( NN X. { A } ) ) ` 0 ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u 0 ) ) ) ) = 1 |
6 |
3 5
|
eqtrdi |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |