| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
expnnval |
|- ( ( A e. CC /\ 1 e. NN ) -> ( A ^ 1 ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` 1 ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. CC -> ( A ^ 1 ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` 1 ) ) |
| 4 |
|
1z |
|- 1 e. ZZ |
| 5 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , ( NN X. { A } ) ) ` 1 ) = ( ( NN X. { A } ) ` 1 ) ) |
| 6 |
4 5
|
ax-mp |
|- ( seq 1 ( x. , ( NN X. { A } ) ) ` 1 ) = ( ( NN X. { A } ) ` 1 ) |
| 7 |
3 6
|
eqtrdi |
|- ( A e. CC -> ( A ^ 1 ) = ( ( NN X. { A } ) ` 1 ) ) |
| 8 |
|
fvconst2g |
|- ( ( A e. CC /\ 1 e. NN ) -> ( ( NN X. { A } ) ` 1 ) = A ) |
| 9 |
1 8
|
mpan2 |
|- ( A e. CC -> ( ( NN X. { A } ) ` 1 ) = A ) |
| 10 |
7 9
|
eqtrd |
|- ( A e. CC -> ( A ^ 1 ) = A ) |