| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exp11nnd.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | exp11nnd.2 |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | exp11nnd.3 |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | exp11nnd.4 |  |-  ( ph -> ( A ^ N ) = ( B ^ N ) ) | 
						
							| 5 | 1 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 6 | 3 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 7 | 5 6 | reexpcld |  |-  ( ph -> ( A ^ N ) e. RR ) | 
						
							| 8 | 2 | rpred |  |-  ( ph -> B e. RR ) | 
						
							| 9 | 8 6 | reexpcld |  |-  ( ph -> ( B ^ N ) e. RR ) | 
						
							| 10 | 7 9 | lttri3d |  |-  ( ph -> ( ( A ^ N ) = ( B ^ N ) <-> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) ) | 
						
							| 11 | 4 10 | mpbid |  |-  ( ph -> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) | 
						
							| 12 | 1 2 3 | ltexp1d |  |-  ( ph -> ( A < B <-> ( A ^ N ) < ( B ^ N ) ) ) | 
						
							| 13 | 12 | notbid |  |-  ( ph -> ( -. A < B <-> -. ( A ^ N ) < ( B ^ N ) ) ) | 
						
							| 14 | 2 1 3 | ltexp1d |  |-  ( ph -> ( B < A <-> ( B ^ N ) < ( A ^ N ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( ph -> ( -. B < A <-> -. ( B ^ N ) < ( A ^ N ) ) ) | 
						
							| 16 | 13 15 | anbi12d |  |-  ( ph -> ( ( -. A < B /\ -. B < A ) <-> ( -. ( A ^ N ) < ( B ^ N ) /\ -. ( B ^ N ) < ( A ^ N ) ) ) ) | 
						
							| 17 | 11 16 | mpbird |  |-  ( ph -> ( -. A < B /\ -. B < A ) ) | 
						
							| 18 | 5 8 | lttri3d |  |-  ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) ) | 
						
							| 19 | 17 18 | mpbird |  |-  ( ph -> A = B ) |