Metamath Proof Explorer


Theorem exp45

Description: An exportation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis exp45.1
|- ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) -> ta )
Assertion exp45
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )

Proof

Step Hyp Ref Expression
1 exp45.1
 |-  ( ( ph /\ ( ps /\ ( ch /\ th ) ) ) -> ta )
2 1 exp32
 |-  ( ph -> ( ps -> ( ( ch /\ th ) -> ta ) ) )
3 2 exp4a
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )