Metamath Proof Explorer


Theorem exp516

Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009)

Ref Expression
Hypothesis exp516.1
|- ( ( ( ph /\ ( ps /\ ch /\ th ) ) /\ ta ) -> et )
Assertion exp516
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp516.1
 |-  ( ( ( ph /\ ( ps /\ ch /\ th ) ) /\ ta ) -> et )
2 1 exp31
 |-  ( ph -> ( ( ps /\ ch /\ th ) -> ( ta -> et ) ) )
3 2 3expd
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )