Metamath Proof Explorer


Theorem exp53

Description: An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009)

Ref Expression
Hypothesis exp53.1
|- ( ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) /\ ta ) -> et )
Assertion exp53
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp53.1
 |-  ( ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) /\ ta ) -> et )
2 1 ex
 |-  ( ( ( ph /\ ps ) /\ ( ch /\ th ) ) -> ( ta -> et ) )
3 2 exp43
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )