Metamath Proof Explorer


Theorem exp5c

Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)

Ref Expression
Hypothesis exp5c.1
|- ( ph -> ( ( ps /\ ch ) -> ( ( th /\ ta ) -> et ) ) )
Assertion exp5c
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp5c.1
 |-  ( ph -> ( ( ps /\ ch ) -> ( ( th /\ ta ) -> et ) ) )
2 1 exp4a
 |-  ( ph -> ( ( ps /\ ch ) -> ( th -> ( ta -> et ) ) ) )
3 2 expd
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )