Description: An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exp5j.1 | |- ( ph -> ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et ) ) | |
| Assertion | exp5j | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exp5j.1 | |- ( ph -> ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et ) ) | |
| 2 | 1 | expd | |- ( ph -> ( ( ( ps /\ ch ) /\ th ) -> ( ta -> et ) ) ) | 
| 3 | 2 | exp4c | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |