Metamath Proof Explorer


Theorem exp5o

Description: A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009)

Ref Expression
Hypothesis exp5o.1
|- ( ( ph /\ ps /\ ch ) -> ( ( th /\ ta ) -> et ) )
Assertion exp5o
|- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )

Proof

Step Hyp Ref Expression
1 exp5o.1
 |-  ( ( ph /\ ps /\ ch ) -> ( ( th /\ ta ) -> et ) )
2 1 expd
 |-  ( ( ph /\ ps /\ ch ) -> ( th -> ( ta -> et ) ) )
3 2 3exp
 |-  ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) )