Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 0 -> ( M + j ) = ( M + 0 ) ) |
2 |
1
|
oveq2d |
|- ( j = 0 -> ( A ^ ( M + j ) ) = ( A ^ ( M + 0 ) ) ) |
3 |
|
oveq2 |
|- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
4 |
3
|
oveq2d |
|- ( j = 0 -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) |
5 |
2 4
|
eqeq12d |
|- ( j = 0 -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) ) |
6 |
5
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) ) ) |
7 |
|
oveq2 |
|- ( j = k -> ( M + j ) = ( M + k ) ) |
8 |
7
|
oveq2d |
|- ( j = k -> ( A ^ ( M + j ) ) = ( A ^ ( M + k ) ) ) |
9 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
10 |
9
|
oveq2d |
|- ( j = k -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) |
11 |
8 10
|
eqeq12d |
|- ( j = k -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) ) |
12 |
11
|
imbi2d |
|- ( j = k -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) ) ) |
13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( M + j ) = ( M + ( k + 1 ) ) ) |
14 |
13
|
oveq2d |
|- ( j = ( k + 1 ) -> ( A ^ ( M + j ) ) = ( A ^ ( M + ( k + 1 ) ) ) ) |
15 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
16 |
15
|
oveq2d |
|- ( j = ( k + 1 ) -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
|- ( j = N -> ( M + j ) = ( M + N ) ) |
20 |
19
|
oveq2d |
|- ( j = N -> ( A ^ ( M + j ) ) = ( A ^ ( M + N ) ) ) |
21 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
22 |
21
|
oveq2d |
|- ( j = N -> ( ( A ^ M ) x. ( A ^ j ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
23 |
20 22
|
eqeq12d |
|- ( j = N -> ( ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) <-> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
24 |
23
|
imbi2d |
|- ( j = N -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + j ) ) = ( ( A ^ M ) x. ( A ^ j ) ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) ) |
25 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
26 |
25
|
addid1d |
|- ( M e. NN0 -> ( M + 0 ) = M ) |
27 |
26
|
adantl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( M + 0 ) = M ) |
28 |
27
|
oveq2d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( A ^ M ) ) |
29 |
|
expcl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
30 |
29
|
mulid1d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) x. 1 ) = ( A ^ M ) ) |
31 |
28 30
|
eqtr4d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. 1 ) ) |
32 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
33 |
32
|
adantr |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ 0 ) = 1 ) |
34 |
33
|
oveq2d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) x. ( A ^ 0 ) ) = ( ( A ^ M ) x. 1 ) ) |
35 |
31 34
|
eqtr4d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + 0 ) ) = ( ( A ^ M ) x. ( A ^ 0 ) ) ) |
36 |
|
oveq1 |
|- ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( ( A ^ ( M + k ) ) x. A ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) |
37 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
38 |
|
ax-1cn |
|- 1 e. CC |
39 |
|
addass |
|- ( ( M e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
40 |
38 39
|
mp3an3 |
|- ( ( M e. CC /\ k e. CC ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
41 |
25 37 40
|
syl2an |
|- ( ( M e. NN0 /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
42 |
41
|
adantll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( M + k ) + 1 ) = ( M + ( k + 1 ) ) ) |
43 |
42
|
oveq2d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( A ^ ( M + ( k + 1 ) ) ) ) |
44 |
|
simpll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> A e. CC ) |
45 |
|
nn0addcl |
|- ( ( M e. NN0 /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
46 |
45
|
adantll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M + k ) e. NN0 ) |
47 |
|
expp1 |
|- ( ( A e. CC /\ ( M + k ) e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
48 |
44 46 47
|
syl2anc |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M + k ) + 1 ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
49 |
43 48
|
eqtr3d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ ( M + k ) ) x. A ) ) |
50 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
51 |
50
|
adantlr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
52 |
51
|
oveq2d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) = ( ( A ^ M ) x. ( ( A ^ k ) x. A ) ) ) |
53 |
29
|
adantr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ M ) e. CC ) |
54 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
55 |
54
|
adantlr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
56 |
53 55 44
|
mulassd |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) = ( ( A ^ M ) x. ( ( A ^ k ) x. A ) ) ) |
57 |
52 56
|
eqtr4d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) |
58 |
49 57
|
eqeq12d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) <-> ( ( A ^ ( M + k ) ) x. A ) = ( ( ( A ^ M ) x. ( A ^ k ) ) x. A ) ) ) |
59 |
36 58
|
syl5ibr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) |
60 |
59
|
expcom |
|- ( k e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
61 |
60
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + k ) ) = ( ( A ^ M ) x. ( A ^ k ) ) ) -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + ( k + 1 ) ) ) = ( ( A ^ M ) x. ( A ^ ( k + 1 ) ) ) ) ) ) |
62 |
6 12 18 24 35 61
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
63 |
62
|
expdcom |
|- ( A e. CC -> ( M e. NN0 -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) ) |
64 |
63
|
3imp |
|- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |