Metamath Proof Explorer


Theorem expaddd

Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
expcld.2
|- ( ph -> N e. NN0 )
expaddd.2
|- ( ph -> M e. NN0 )
Assertion expaddd
|- ( ph -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 expcld.2
 |-  ( ph -> N e. NN0 )
3 expaddd.2
 |-  ( ph -> M e. NN0 )
4 expadd
 |-  ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) )
5 1 3 2 4 syl3anc
 |-  ( ph -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) )