| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 2 |
|
elznn0nn |
|- ( M e. ZZ <-> ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) |
| 3 |
|
expadd |
|- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 4 |
3
|
3expia |
|- ( ( A e. CC /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 5 |
4
|
adantlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 6 |
|
expaddzlem |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 7 |
6
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 8 |
5 7
|
jaodan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 9 |
|
expaddzlem |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( N + M ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
| 10 |
|
simp3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. NN0 ) |
| 11 |
10
|
nn0cnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. CC ) |
| 12 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. CC ) |
| 14 |
11 13
|
addcomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( M + N ) = ( N + M ) ) |
| 15 |
14
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( A ^ ( N + M ) ) ) |
| 16 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A e. CC ) |
| 17 |
|
expcl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
| 18 |
16 10 17
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
| 19 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A =/= 0 ) |
| 20 |
13
|
negnegd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N = N ) |
| 21 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN ) |
| 22 |
21
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN0 ) |
| 23 |
|
nn0negz |
|- ( -u N e. NN0 -> -u -u N e. ZZ ) |
| 24 |
22 23
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N e. ZZ ) |
| 25 |
20 24
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. ZZ ) |
| 26 |
|
expclz |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
| 27 |
16 19 25 26
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ N ) e. CC ) |
| 28 |
18 27
|
mulcomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
| 29 |
9 15 28
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 30 |
29
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 31 |
30
|
impancom |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 32 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. RR ) |
| 33 |
32
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. CC ) |
| 34 |
|
simp3l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
| 35 |
34
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
| 36 |
33 35
|
negdid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) = ( -u M + -u N ) ) |
| 37 |
36
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( A ^ ( -u M + -u N ) ) ) |
| 38 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
| 39 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN ) |
| 40 |
39
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN0 ) |
| 41 |
|
simp3r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
| 42 |
41
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
| 43 |
|
expadd |
|- ( ( A e. CC /\ -u M e. NN0 /\ -u N e. NN0 ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 44 |
38 40 42 43
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 45 |
37 44
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 47 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 48 |
47
|
oveq1i |
|- ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
| 49 |
46 48
|
eqtr4di |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 50 |
|
expcl |
|- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
| 51 |
38 40 50
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) e. CC ) |
| 52 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
| 53 |
40
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. ZZ ) |
| 54 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
| 55 |
38 52 53 54
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) =/= 0 ) |
| 56 |
|
expcl |
|- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
| 57 |
38 42 56
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
| 58 |
42
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
| 59 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
| 60 |
38 52 58 59
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
| 61 |
|
ax-1cn |
|- 1 e. CC |
| 62 |
|
divmuldiv |
|- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 63 |
61 61 62
|
mpanl12 |
|- ( ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 64 |
51 55 57 60 63
|
syl22anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
| 65 |
49 64
|
eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
| 66 |
33 35
|
addcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M + N ) e. CC ) |
| 67 |
40 42
|
nn0addcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u M + -u N ) e. NN0 ) |
| 68 |
36 67
|
eqeltrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) e. NN0 ) |
| 69 |
|
expneg2 |
|- ( ( A e. CC /\ ( M + N ) e. CC /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
| 70 |
38 66 68 69
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
| 71 |
|
expneg2 |
|- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 72 |
38 33 40 71
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 73 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 74 |
38 35 42 73
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 75 |
72 74
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
| 76 |
65 70 75
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| 77 |
76
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 78 |
31 77
|
jaodan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 79 |
8 78
|
jaod |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 80 |
2 79
|
sylan2b |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 81 |
1 80
|
biimtrid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( N e. ZZ -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
| 82 |
81
|
impr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |