Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
2 |
|
elznn0nn |
|- ( M e. ZZ <-> ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) |
3 |
|
expadd |
|- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
4 |
3
|
3expia |
|- ( ( A e. CC /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
5 |
4
|
adantlr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
6 |
|
expaddzlem |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
7 |
6
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
8 |
5 7
|
jaodan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( N e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
9 |
|
expaddzlem |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( N + M ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
10 |
|
simp3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. NN0 ) |
11 |
10
|
nn0cnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> M e. CC ) |
12 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. RR ) |
13 |
12
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. CC ) |
14 |
11 13
|
addcomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( M + N ) = ( N + M ) ) |
15 |
14
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( A ^ ( N + M ) ) ) |
16 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A e. CC ) |
17 |
|
expcl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
18 |
16 10 17
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
19 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> A =/= 0 ) |
20 |
13
|
negnegd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N = N ) |
21 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN ) |
22 |
21
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u N e. NN0 ) |
23 |
|
nn0negz |
|- ( -u N e. NN0 -> -u -u N e. ZZ ) |
24 |
22 23
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> -u -u N e. ZZ ) |
25 |
20 24
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> N e. ZZ ) |
26 |
|
expclz |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) e. CC ) |
27 |
16 19 25 26
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ N ) e. CC ) |
28 |
18 27
|
mulcomd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( A ^ N ) x. ( A ^ M ) ) ) |
29 |
9 15 28
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) /\ M e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
30 |
29
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M e. NN0 -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
31 |
30
|
impancom |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. NN0 ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
32 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. RR ) |
33 |
32
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> M e. CC ) |
34 |
|
simp3l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. RR ) |
35 |
34
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> N e. CC ) |
36 |
33 35
|
negdid |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) = ( -u M + -u N ) ) |
37 |
36
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( A ^ ( -u M + -u N ) ) ) |
38 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A e. CC ) |
39 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN ) |
40 |
39
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. NN0 ) |
41 |
|
simp3r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN ) |
42 |
41
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. NN0 ) |
43 |
|
expadd |
|- ( ( A e. CC /\ -u M e. NN0 /\ -u N e. NN0 ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
44 |
38 40 42 43
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( -u M + -u N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
45 |
37 44
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u ( M + N ) ) = ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
46 |
45
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
47 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
48 |
47
|
oveq1i |
|- ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) = ( 1 / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) |
49 |
46 48
|
eqtr4di |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
50 |
|
expcl |
|- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
51 |
38 40 50
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) e. CC ) |
52 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> A =/= 0 ) |
53 |
40
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u M e. ZZ ) |
54 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
55 |
38 52 53 54
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u M ) =/= 0 ) |
56 |
|
expcl |
|- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
57 |
38 42 56
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) e. CC ) |
58 |
42
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u N e. ZZ ) |
59 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
60 |
38 52 58 59
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ -u N ) =/= 0 ) |
61 |
|
ax-1cn |
|- 1 e. CC |
62 |
|
divmuldiv |
|- ( ( ( 1 e. CC /\ 1 e. CC ) /\ ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
63 |
61 61 62
|
mpanl12 |
|- ( ( ( ( A ^ -u M ) e. CC /\ ( A ^ -u M ) =/= 0 ) /\ ( ( A ^ -u N ) e. CC /\ ( A ^ -u N ) =/= 0 ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
64 |
51 55 57 60 63
|
syl22anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) = ( ( 1 x. 1 ) / ( ( A ^ -u M ) x. ( A ^ -u N ) ) ) ) |
65 |
49 64
|
eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
66 |
33 35
|
addcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( M + N ) e. CC ) |
67 |
40 42
|
nn0addcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( -u M + -u N ) e. NN0 ) |
68 |
36 67
|
eqeltrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> -u ( M + N ) e. NN0 ) |
69 |
|
expneg2 |
|- ( ( A e. CC /\ ( M + N ) e. CC /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
70 |
38 66 68 69
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
71 |
|
expneg2 |
|- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
72 |
38 33 40 71
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
73 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
74 |
38 35 42 73
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
75 |
72 74
|
oveq12d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( 1 / ( A ^ -u N ) ) ) ) |
76 |
65 70 75
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
77 |
76
|
3expia |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
78 |
31 77
|
jaodan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. RR /\ -u N e. NN ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
79 |
8 78
|
jaod |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. NN0 \/ ( M e. RR /\ -u M e. NN ) ) ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
80 |
2 79
|
sylan2b |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
81 |
1 80
|
syl5bi |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ M e. ZZ ) -> ( N e. ZZ -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) ) |
82 |
81
|
impr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |