Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A e. CC ) |
2 |
|
simp3 |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. NN0 ) |
3 |
|
expcl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
4 |
1 2 3
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
5 |
|
simp2r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN ) |
6 |
5
|
nnnn0d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN0 ) |
7 |
|
expcl |
|- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
8 |
1 6 7
|
syl2anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) e. CC ) |
9 |
|
simp1r |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A =/= 0 ) |
10 |
5
|
nnzd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. ZZ ) |
11 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
12 |
1 9 10 11
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) =/= 0 ) |
13 |
4 8 12
|
divrec2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( A ^ N ) / ( A ^ -u M ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( A ^ N ) ) ) |
14 |
|
simp2l |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. RR ) |
15 |
14
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. CC ) |
16 |
15
|
negnegd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u -u M = M ) |
17 |
|
nnnegz |
|- ( -u M e. NN -> -u -u M e. ZZ ) |
18 |
5 17
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u -u M e. ZZ ) |
19 |
16 18
|
eqeltrrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. ZZ ) |
20 |
2
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. ZZ ) |
21 |
19 20
|
zaddcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( M + N ) e. ZZ ) |
22 |
|
expclz |
|- ( ( A e. CC /\ A =/= 0 /\ ( M + N ) e. ZZ ) -> ( A ^ ( M + N ) ) e. CC ) |
23 |
1 9 21 22
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) e. CC ) |
24 |
23
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) e. CC ) |
25 |
8
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ -u M ) e. CC ) |
26 |
12
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ -u M ) =/= 0 ) |
27 |
24 25 26
|
divcan4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) / ( A ^ -u M ) ) = ( A ^ ( M + N ) ) ) |
28 |
1
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> A e. CC ) |
29 |
|
simpr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( M + N ) e. NN0 ) |
30 |
6
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> -u M e. NN0 ) |
31 |
|
expadd |
|- ( ( A e. CC /\ ( M + N ) e. NN0 /\ -u M e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) ) |
32 |
28 29 30 31
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) ) |
33 |
21
|
zcnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( M + N ) e. CC ) |
34 |
33 15
|
negsubd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) + -u M ) = ( ( M + N ) - M ) ) |
35 |
2
|
nn0cnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. CC ) |
36 |
15 35
|
pncan2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) - M ) = N ) |
37 |
34 36
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) + -u M ) = N ) |
38 |
37
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( M + N ) + -u M ) = N ) |
39 |
38
|
oveq2d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( A ^ N ) ) |
40 |
32 39
|
eqtr3d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) = ( A ^ N ) ) |
41 |
40
|
oveq1d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) / ( A ^ -u M ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
42 |
27 41
|
eqtr3d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
43 |
1
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> A e. CC ) |
44 |
33
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( M + N ) e. CC ) |
45 |
|
simpr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> -u ( M + N ) e. NN0 ) |
46 |
|
expneg2 |
|- ( ( A e. CC /\ ( M + N ) e. CC /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
47 |
43 44 45 46
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
48 |
21
|
znegcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u ( M + N ) e. ZZ ) |
49 |
|
expclz |
|- ( ( A e. CC /\ A =/= 0 /\ -u ( M + N ) e. ZZ ) -> ( A ^ -u ( M + N ) ) e. CC ) |
50 |
1 9 48 49
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u ( M + N ) ) e. CC ) |
51 |
50
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ -u ( M + N ) ) e. CC ) |
52 |
4
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ N ) e. CC ) |
53 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
54 |
1 9 20 53
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ N ) =/= 0 ) |
55 |
54
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ N ) =/= 0 ) |
56 |
51 52 55
|
divcan4d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) / ( A ^ N ) ) = ( A ^ -u ( M + N ) ) ) |
57 |
2
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> N e. NN0 ) |
58 |
|
expadd |
|- ( ( A e. CC /\ -u ( M + N ) e. NN0 /\ N e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) ) |
59 |
43 45 57 58
|
syl3anc |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) ) |
60 |
15 35
|
negdi2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u ( M + N ) = ( -u M - N ) ) |
61 |
60
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u ( M + N ) + N ) = ( ( -u M - N ) + N ) ) |
62 |
15
|
negcld |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. CC ) |
63 |
62 35
|
npcand |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( -u M - N ) + N ) = -u M ) |
64 |
61 63
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u ( M + N ) + N ) = -u M ) |
65 |
64
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( -u ( M + N ) + N ) = -u M ) |
66 |
65
|
oveq2d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( A ^ -u M ) ) |
67 |
59 66
|
eqtr3d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) = ( A ^ -u M ) ) |
68 |
67
|
oveq1d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) / ( A ^ N ) ) = ( ( A ^ -u M ) / ( A ^ N ) ) ) |
69 |
56 68
|
eqtr3d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ -u ( M + N ) ) = ( ( A ^ -u M ) / ( A ^ N ) ) ) |
70 |
69
|
oveq2d |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) ) |
71 |
8 4 12 54
|
recdivd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
72 |
71
|
adantr |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
73 |
70 72
|
eqtrd |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
74 |
47 73
|
eqtrd |
|- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
75 |
|
elznn0 |
|- ( ( M + N ) e. ZZ <-> ( ( M + N ) e. RR /\ ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) ) |
76 |
75
|
simprbi |
|- ( ( M + N ) e. ZZ -> ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) |
77 |
21 76
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) |
78 |
42 74 77
|
mpjaodan |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
79 |
|
expneg2 |
|- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
80 |
1 15 6 79
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
81 |
80
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( A ^ N ) ) ) |
82 |
13 78 81
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |