Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| ltexp2d.2 | |- ( ph -> M e. ZZ ) |
||
| ltexp2d.3 | |- ( ph -> N e. ZZ ) |
||
| ltexp2d.4 | |- ( ph -> 1 < A ) |
||
| expcand.5 | |- ( ph -> ( A ^ M ) = ( A ^ N ) ) |
||
| Assertion | expcand | |- ( ph -> M = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltexp2d.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | ltexp2d.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | ltexp2d.4 | |- ( ph -> 1 < A ) |
|
| 5 | expcand.5 | |- ( ph -> ( A ^ M ) = ( A ^ N ) ) |
|
| 6 | expcan | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( ( A ^ M ) = ( A ^ N ) <-> M = N ) ) |
|
| 7 | 1 2 3 4 6 | syl31anc | |- ( ph -> ( ( A ^ M ) = ( A ^ N ) <-> M = N ) ) |
| 8 | 5 7 | mpbid | |- ( ph -> M = N ) |