Metamath Proof Explorer


Theorem expcand

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1
|- ( ph -> A e. RR )
ltexp2d.2
|- ( ph -> M e. ZZ )
ltexp2d.3
|- ( ph -> N e. ZZ )
ltexp2d.4
|- ( ph -> 1 < A )
expcand.5
|- ( ph -> ( A ^ M ) = ( A ^ N ) )
Assertion expcand
|- ( ph -> M = N )

Proof

Step Hyp Ref Expression
1 resqcld.1
 |-  ( ph -> A e. RR )
2 ltexp2d.2
 |-  ( ph -> M e. ZZ )
3 ltexp2d.3
 |-  ( ph -> N e. ZZ )
4 ltexp2d.4
 |-  ( ph -> 1 < A )
5 expcand.5
 |-  ( ph -> ( A ^ M ) = ( A ^ N ) )
6 expcan
 |-  ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( ( A ^ M ) = ( A ^ N ) <-> M = N ) )
7 1 2 3 4 6 syl31anc
 |-  ( ph -> ( ( A ^ M ) = ( A ^ N ) <-> M = N ) )
8 5 7 mpbid
 |-  ( ph -> M = N )