Metamath Proof Explorer


Theorem expcl

Description: Closure law for nonnegative integer exponentiation. (Contributed by NM, 26-May-2005)

Ref Expression
Assertion expcl
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC )

Proof

Step Hyp Ref Expression
1 ssid
 |-  CC C_ CC
2 mulcl
 |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC )
3 ax-1cn
 |-  1 e. CC
4 1 2 3 expcllem
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC )