Description: Closure law for nonnegative integer exponentiation. For integer exponents, see expclz . (Contributed by NM, 26-May-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expcl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- CC C_ CC |
|
| 2 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | 1 2 3 | expcllem | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |