Metamath Proof Explorer


Theorem expcld

Description: Closure law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
expcld.2
|- ( ph -> N e. NN0 )
Assertion expcld
|- ( ph -> ( A ^ N ) e. CC )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 expcld.2
 |-  ( ph -> N e. NN0 )
3 expcl
 |-  ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ N ) e. CC )