Step |
Hyp |
Ref |
Expression |
1 |
|
expcllem.1 |
|- F C_ CC |
2 |
|
expcllem.2 |
|- ( ( x e. F /\ y e. F ) -> ( x x. y ) e. F ) |
3 |
|
expcllem.3 |
|- 1 e. F |
4 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
5 |
|
oveq2 |
|- ( z = 1 -> ( A ^ z ) = ( A ^ 1 ) ) |
6 |
5
|
eleq1d |
|- ( z = 1 -> ( ( A ^ z ) e. F <-> ( A ^ 1 ) e. F ) ) |
7 |
6
|
imbi2d |
|- ( z = 1 -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ 1 ) e. F ) ) ) |
8 |
|
oveq2 |
|- ( z = w -> ( A ^ z ) = ( A ^ w ) ) |
9 |
8
|
eleq1d |
|- ( z = w -> ( ( A ^ z ) e. F <-> ( A ^ w ) e. F ) ) |
10 |
9
|
imbi2d |
|- ( z = w -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ w ) e. F ) ) ) |
11 |
|
oveq2 |
|- ( z = ( w + 1 ) -> ( A ^ z ) = ( A ^ ( w + 1 ) ) ) |
12 |
11
|
eleq1d |
|- ( z = ( w + 1 ) -> ( ( A ^ z ) e. F <-> ( A ^ ( w + 1 ) ) e. F ) ) |
13 |
12
|
imbi2d |
|- ( z = ( w + 1 ) -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
14 |
|
oveq2 |
|- ( z = B -> ( A ^ z ) = ( A ^ B ) ) |
15 |
14
|
eleq1d |
|- ( z = B -> ( ( A ^ z ) e. F <-> ( A ^ B ) e. F ) ) |
16 |
15
|
imbi2d |
|- ( z = B -> ( ( A e. F -> ( A ^ z ) e. F ) <-> ( A e. F -> ( A ^ B ) e. F ) ) ) |
17 |
1
|
sseli |
|- ( A e. F -> A e. CC ) |
18 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
19 |
17 18
|
syl |
|- ( A e. F -> ( A ^ 1 ) = A ) |
20 |
19
|
eleq1d |
|- ( A e. F -> ( ( A ^ 1 ) e. F <-> A e. F ) ) |
21 |
20
|
ibir |
|- ( A e. F -> ( A ^ 1 ) e. F ) |
22 |
2
|
caovcl |
|- ( ( ( A ^ w ) e. F /\ A e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
23 |
22
|
ancoms |
|- ( ( A e. F /\ ( A ^ w ) e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
24 |
23
|
adantlr |
|- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( ( A ^ w ) x. A ) e. F ) |
25 |
|
nnnn0 |
|- ( w e. NN -> w e. NN0 ) |
26 |
|
expp1 |
|- ( ( A e. CC /\ w e. NN0 ) -> ( A ^ ( w + 1 ) ) = ( ( A ^ w ) x. A ) ) |
27 |
17 25 26
|
syl2an |
|- ( ( A e. F /\ w e. NN ) -> ( A ^ ( w + 1 ) ) = ( ( A ^ w ) x. A ) ) |
28 |
27
|
eleq1d |
|- ( ( A e. F /\ w e. NN ) -> ( ( A ^ ( w + 1 ) ) e. F <-> ( ( A ^ w ) x. A ) e. F ) ) |
29 |
28
|
adantr |
|- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( ( A ^ ( w + 1 ) ) e. F <-> ( ( A ^ w ) x. A ) e. F ) ) |
30 |
24 29
|
mpbird |
|- ( ( ( A e. F /\ w e. NN ) /\ ( A ^ w ) e. F ) -> ( A ^ ( w + 1 ) ) e. F ) |
31 |
30
|
exp31 |
|- ( A e. F -> ( w e. NN -> ( ( A ^ w ) e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
32 |
31
|
com12 |
|- ( w e. NN -> ( A e. F -> ( ( A ^ w ) e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
33 |
32
|
a2d |
|- ( w e. NN -> ( ( A e. F -> ( A ^ w ) e. F ) -> ( A e. F -> ( A ^ ( w + 1 ) ) e. F ) ) ) |
34 |
7 10 13 16 21 33
|
nnind |
|- ( B e. NN -> ( A e. F -> ( A ^ B ) e. F ) ) |
35 |
34
|
impcom |
|- ( ( A e. F /\ B e. NN ) -> ( A ^ B ) e. F ) |
36 |
|
oveq2 |
|- ( B = 0 -> ( A ^ B ) = ( A ^ 0 ) ) |
37 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
38 |
17 37
|
syl |
|- ( A e. F -> ( A ^ 0 ) = 1 ) |
39 |
36 38
|
sylan9eqr |
|- ( ( A e. F /\ B = 0 ) -> ( A ^ B ) = 1 ) |
40 |
39 3
|
eqeltrdi |
|- ( ( A e. F /\ B = 0 ) -> ( A ^ B ) e. F ) |
41 |
35 40
|
jaodan |
|- ( ( A e. F /\ ( B e. NN \/ B = 0 ) ) -> ( A ^ B ) e. F ) |
42 |
4 41
|
sylan2b |
|- ( ( A e. F /\ B e. NN0 ) -> ( A ^ B ) e. F ) |