Step |
Hyp |
Ref |
Expression |
1 |
|
expcn.j |
|- J = ( TopOpen ` CCfld ) |
2 |
|
oveq2 |
|- ( n = 0 -> ( x ^ n ) = ( x ^ 0 ) ) |
3 |
2
|
mpteq2dv |
|- ( n = 0 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 0 ) ) ) |
4 |
3
|
eleq1d |
|- ( n = 0 -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ 0 ) ) e. ( J Cn J ) ) ) |
5 |
|
oveq2 |
|- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
6 |
5
|
mpteq2dv |
|- ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
7 |
6
|
eleq1d |
|- ( n = k -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) ) |
8 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
9 |
8
|
mpteq2dv |
|- ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
10 |
9
|
eleq1d |
|- ( n = ( k + 1 ) -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) ) |
11 |
|
oveq2 |
|- ( n = N -> ( x ^ n ) = ( x ^ N ) ) |
12 |
11
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
13 |
12
|
eleq1d |
|- ( n = N -> ( ( x e. CC |-> ( x ^ n ) ) e. ( J Cn J ) <-> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) ) |
14 |
|
exp0 |
|- ( x e. CC -> ( x ^ 0 ) = 1 ) |
15 |
14
|
mpteq2ia |
|- ( x e. CC |-> ( x ^ 0 ) ) = ( x e. CC |-> 1 ) |
16 |
1
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
17 |
16
|
a1i |
|- ( T. -> J e. ( TopOn ` CC ) ) |
18 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
19 |
17 17 18
|
cnmptc |
|- ( T. -> ( x e. CC |-> 1 ) e. ( J Cn J ) ) |
20 |
19
|
mptru |
|- ( x e. CC |-> 1 ) e. ( J Cn J ) |
21 |
15 20
|
eqeltri |
|- ( x e. CC |-> ( x ^ 0 ) ) e. ( J Cn J ) |
22 |
|
oveq1 |
|- ( x = n -> ( x ^ ( k + 1 ) ) = ( n ^ ( k + 1 ) ) ) |
23 |
22
|
cbvmptv |
|- ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( n e. CC |-> ( n ^ ( k + 1 ) ) ) |
24 |
|
id |
|- ( n e. CC -> n e. CC ) |
25 |
|
simpl |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> k e. NN0 ) |
26 |
|
expp1 |
|- ( ( n e. CC /\ k e. NN0 ) -> ( n ^ ( k + 1 ) ) = ( ( n ^ k ) x. n ) ) |
27 |
24 25 26
|
syl2anr |
|- ( ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) /\ n e. CC ) -> ( n ^ ( k + 1 ) ) = ( ( n ^ k ) x. n ) ) |
28 |
27
|
mpteq2dva |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( n ^ ( k + 1 ) ) ) = ( n e. CC |-> ( ( n ^ k ) x. n ) ) ) |
29 |
23 28
|
syl5eq |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( n e. CC |-> ( ( n ^ k ) x. n ) ) ) |
30 |
16
|
a1i |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> J e. ( TopOn ` CC ) ) |
31 |
|
oveq1 |
|- ( x = n -> ( x ^ k ) = ( n ^ k ) ) |
32 |
31
|
cbvmptv |
|- ( x e. CC |-> ( x ^ k ) ) = ( n e. CC |-> ( n ^ k ) ) |
33 |
|
simpr |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) |
34 |
32 33
|
eqeltrrid |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( n ^ k ) ) e. ( J Cn J ) ) |
35 |
30
|
cnmptid |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> n ) e. ( J Cn J ) ) |
36 |
1
|
mulcn |
|- x. e. ( ( J tX J ) Cn J ) |
37 |
36
|
a1i |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> x. e. ( ( J tX J ) Cn J ) ) |
38 |
30 34 35 37
|
cnmpt12f |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( n e. CC |-> ( ( n ^ k ) x. n ) ) e. ( J Cn J ) ) |
39 |
29 38
|
eqeltrd |
|- ( ( k e. NN0 /\ ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) |
40 |
39
|
ex |
|- ( k e. NN0 -> ( ( x e. CC |-> ( x ^ k ) ) e. ( J Cn J ) -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) e. ( J Cn J ) ) ) |
41 |
4 7 10 13 21 40
|
nn0ind |
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( J Cn J ) ) |