Metamath Proof Explorer


Theorem expcncf

Description: The power function on complex numbers, for fixed exponent N, is continuous. Similar to expcn . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion expcncf
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
2 1 expcn
 |-  ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) )
3 1 cncfcn1
 |-  ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) )
4 2 3 eleqtrrdi
 |-  ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) )