Step |
Hyp |
Ref |
Expression |
1 |
|
expcnfg.1 |
|- F/_ x F |
2 |
|
expcnfg.2 |
|- ( ph -> F e. ( A -cn-> CC ) ) |
3 |
|
expcnfg.3 |
|- ( ph -> N e. NN0 ) |
4 |
|
nfcv |
|- F/_ t ( ( F ` x ) ^ N ) |
5 |
|
nfcv |
|- F/_ x t |
6 |
1 5
|
nffv |
|- F/_ x ( F ` t ) |
7 |
|
nfcv |
|- F/_ x ^ |
8 |
|
nfcv |
|- F/_ x N |
9 |
6 7 8
|
nfov |
|- F/_ x ( ( F ` t ) ^ N ) |
10 |
|
fveq2 |
|- ( x = t -> ( F ` x ) = ( F ` t ) ) |
11 |
10
|
oveq1d |
|- ( x = t -> ( ( F ` x ) ^ N ) = ( ( F ` t ) ^ N ) ) |
12 |
4 9 11
|
cbvmpt |
|- ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( t e. A |-> ( ( F ` t ) ^ N ) ) |
13 |
|
cncff |
|- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
14 |
2 13
|
syl |
|- ( ph -> F : A --> CC ) |
15 |
14
|
ffvelrnda |
|- ( ( ph /\ t e. A ) -> ( F ` t ) e. CC ) |
16 |
3
|
adantr |
|- ( ( ph /\ t e. A ) -> N e. NN0 ) |
17 |
15 16
|
expcld |
|- ( ( ph /\ t e. A ) -> ( ( F ` t ) ^ N ) e. CC ) |
18 |
|
oveq1 |
|- ( x = ( F ` t ) -> ( x ^ N ) = ( ( F ` t ) ^ N ) ) |
19 |
|
eqid |
|- ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) |
20 |
6 9 18 19
|
fvmptf |
|- ( ( ( F ` t ) e. CC /\ ( ( F ` t ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) = ( ( F ` t ) ^ N ) ) |
21 |
15 17 20
|
syl2anc |
|- ( ( ph /\ t e. A ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) = ( ( F ` t ) ^ N ) ) |
22 |
21
|
eqcomd |
|- ( ( ph /\ t e. A ) -> ( ( F ` t ) ^ N ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) |
23 |
22
|
mpteq2dva |
|- ( ph -> ( t e. A |-> ( ( F ` t ) ^ N ) ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
24 |
12 23
|
eqtrid |
|- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
25 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
26 |
3
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. NN0 ) |
27 |
25 26
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( x ^ N ) e. CC ) |
28 |
27
|
fmpttd |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) : CC --> CC ) |
29 |
|
fcompt |
|- ( ( ( x e. CC |-> ( x ^ N ) ) : CC --> CC /\ F : A --> CC ) -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
30 |
28 14 29
|
syl2anc |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) = ( t e. A |-> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` t ) ) ) ) |
31 |
24 30
|
eqtr4d |
|- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) = ( ( x e. CC |-> ( x ^ N ) ) o. F ) ) |
32 |
|
expcncf |
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
33 |
3 32
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
34 |
2 33
|
cncfco |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. ( A -cn-> CC ) ) |
35 |
31 34
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( ( F ` x ) ^ N ) ) e. ( A -cn-> CC ) ) |