Step |
Hyp |
Ref |
Expression |
1 |
|
expcnv.1 |
|- ( ph -> A e. CC ) |
2 |
|
expcnv.2 |
|- ( ph -> ( abs ` A ) < 1 ) |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
|
1zzd |
|- ( ( ph /\ A = 0 ) -> 1 e. ZZ ) |
5 |
|
nn0ex |
|- NN0 e. _V |
6 |
5
|
mptex |
|- ( n e. NN0 |-> ( A ^ n ) ) e. _V |
7 |
6
|
a1i |
|- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
8 |
|
0cnd |
|- ( ( ph /\ A = 0 ) -> 0 e. CC ) |
9 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
10 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
11 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
12 |
|
ovex |
|- ( A ^ k ) e. _V |
13 |
10 11 12
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
14 |
9 13
|
syl |
|- ( k e. NN -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
15 |
|
simpr |
|- ( ( ph /\ A = 0 ) -> A = 0 ) |
16 |
15
|
oveq1d |
|- ( ( ph /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
17 |
14 16
|
sylan9eqr |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( 0 ^ k ) ) |
18 |
|
0exp |
|- ( k e. NN -> ( 0 ^ k ) = 0 ) |
19 |
18
|
adantl |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( 0 ^ k ) = 0 ) |
20 |
17 19
|
eqtrd |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = 0 ) |
21 |
3 4 7 8 20
|
climconst |
|- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
22 |
|
1zzd |
|- ( ( ph /\ A =/= 0 ) -> 1 e. ZZ ) |
23 |
2
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) < 1 ) |
24 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
25 |
1 24
|
sylan |
|- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
26 |
25
|
reclt1d |
|- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) < 1 <-> 1 < ( 1 / ( abs ` A ) ) ) ) |
27 |
23 26
|
mpbid |
|- ( ( ph /\ A =/= 0 ) -> 1 < ( 1 / ( abs ` A ) ) ) |
28 |
|
1re |
|- 1 e. RR |
29 |
25
|
rpreccld |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR+ ) |
30 |
29
|
rpred |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR ) |
31 |
|
difrp |
|- ( ( 1 e. RR /\ ( 1 / ( abs ` A ) ) e. RR ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
32 |
28 30 31
|
sylancr |
|- ( ( ph /\ A =/= 0 ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
33 |
27 32
|
mpbid |
|- ( ( ph /\ A =/= 0 ) -> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) |
34 |
33
|
rpreccld |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR+ ) |
35 |
34
|
rpcnd |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC ) |
36 |
|
divcnv |
|- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
37 |
35 36
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
38 |
|
nnex |
|- NN e. _V |
39 |
38
|
mptex |
|- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V |
40 |
39
|
a1i |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
41 |
|
oveq2 |
|- ( n = k -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
42 |
|
eqid |
|- ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) = ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) |
43 |
|
ovex |
|- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. _V |
44 |
41 42 43
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
45 |
44
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
46 |
34
|
rpred |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR ) |
47 |
|
nndivre |
|- ( ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
48 |
46 47
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
49 |
45 48
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) e. RR ) |
50 |
|
oveq2 |
|- ( n = k -> ( ( abs ` A ) ^ n ) = ( ( abs ` A ) ^ k ) ) |
51 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) = ( n e. NN |-> ( ( abs ` A ) ^ n ) ) |
52 |
|
ovex |
|- ( ( abs ` A ) ^ k ) e. _V |
53 |
50 51 52
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
54 |
53
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
55 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
56 |
|
rpexpcl |
|- ( ( ( abs ` A ) e. RR+ /\ k e. ZZ ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
57 |
25 55 56
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
58 |
54 57
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR+ ) |
59 |
58
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR ) |
60 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
61 |
|
rpmulcl |
|- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ /\ k e. RR+ ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
62 |
33 60 61
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
63 |
62
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR ) |
64 |
|
peano2re |
|- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
65 |
63 64
|
syl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
66 |
|
rpexpcl |
|- ( ( ( 1 / ( abs ` A ) ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
67 |
29 55 66
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
68 |
67
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR ) |
69 |
63
|
lep1d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) ) |
70 |
30
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( 1 / ( abs ` A ) ) e. RR ) |
71 |
9
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> k e. NN0 ) |
72 |
29
|
rpge0d |
|- ( ( ph /\ A =/= 0 ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
73 |
72
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
74 |
|
bernneq2 |
|- ( ( ( 1 / ( abs ` A ) ) e. RR /\ k e. NN0 /\ 0 <_ ( 1 / ( abs ` A ) ) ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
75 |
70 71 73 74
|
syl3anc |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
76 |
63 65 68 69 75
|
letrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
77 |
25
|
rpcnne0d |
|- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) ) |
78 |
|
exprec |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
79 |
78
|
3expa |
|- ( ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
80 |
77 55 79
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
81 |
76 80
|
breqtrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( 1 / ( ( abs ` A ) ^ k ) ) ) |
82 |
62 57 81
|
lerec2d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
83 |
33
|
rpcnne0d |
|- ( ( ph /\ A =/= 0 ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) ) |
84 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
85 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
86 |
84 85
|
jca |
|- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
87 |
|
recdiv2 |
|- ( ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) /\ ( k e. CC /\ k =/= 0 ) ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
88 |
83 86 87
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
89 |
82 88
|
breqtrrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
90 |
89 54 45
|
3brtr4d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) <_ ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) ) |
91 |
58
|
rpge0d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) ) |
92 |
3 22 37 40 49 59 90 91
|
climsqz2 |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) |
93 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
94 |
6
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
95 |
39
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
96 |
9
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
97 |
96 13
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
98 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
99 |
1 9 98
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( A ^ k ) e. CC ) |
100 |
97 99
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) e. CC ) |
101 |
|
absexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
102 |
1 9 101
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
103 |
97
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) = ( abs ` ( A ^ k ) ) ) |
104 |
53
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
105 |
102 103 104
|
3eqtr4rd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) ) |
106 |
3 93 94 95 100 105
|
climabs0 |
|- ( ph -> ( ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) ) |
107 |
106
|
biimpar |
|- ( ( ph /\ ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
108 |
92 107
|
syldan |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
109 |
21 108
|
pm2.61dane |
|- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |