| Step |
Hyp |
Ref |
Expression |
| 1 |
|
expcnv.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
expcnv.2 |
|- ( ph -> ( abs ` A ) < 1 ) |
| 3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 4 |
|
1zzd |
|- ( ( ph /\ A = 0 ) -> 1 e. ZZ ) |
| 5 |
|
nn0ex |
|- NN0 e. _V |
| 6 |
5
|
mptex |
|- ( n e. NN0 |-> ( A ^ n ) ) e. _V |
| 7 |
6
|
a1i |
|- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
| 8 |
|
0cnd |
|- ( ( ph /\ A = 0 ) -> 0 e. CC ) |
| 9 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 10 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 11 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
| 12 |
|
ovex |
|- ( A ^ k ) e. _V |
| 13 |
10 11 12
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 14 |
9 13
|
syl |
|- ( k e. NN -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 |
|
simpr |
|- ( ( ph /\ A = 0 ) -> A = 0 ) |
| 16 |
15
|
oveq1d |
|- ( ( ph /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
| 17 |
14 16
|
sylan9eqr |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( 0 ^ k ) ) |
| 18 |
|
0exp |
|- ( k e. NN -> ( 0 ^ k ) = 0 ) |
| 19 |
18
|
adantl |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( 0 ^ k ) = 0 ) |
| 20 |
17 19
|
eqtrd |
|- ( ( ( ph /\ A = 0 ) /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = 0 ) |
| 21 |
3 4 7 8 20
|
climconst |
|- ( ( ph /\ A = 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 22 |
|
1zzd |
|- ( ( ph /\ A =/= 0 ) -> 1 e. ZZ ) |
| 23 |
2
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) < 1 ) |
| 24 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 25 |
1 24
|
sylan |
|- ( ( ph /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 26 |
25
|
reclt1d |
|- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) < 1 <-> 1 < ( 1 / ( abs ` A ) ) ) ) |
| 27 |
23 26
|
mpbid |
|- ( ( ph /\ A =/= 0 ) -> 1 < ( 1 / ( abs ` A ) ) ) |
| 28 |
|
1re |
|- 1 e. RR |
| 29 |
25
|
rpreccld |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR+ ) |
| 30 |
29
|
rpred |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( abs ` A ) ) e. RR ) |
| 31 |
|
difrp |
|- ( ( 1 e. RR /\ ( 1 / ( abs ` A ) ) e. RR ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
| 32 |
28 30 31
|
sylancr |
|- ( ( ph /\ A =/= 0 ) -> ( 1 < ( 1 / ( abs ` A ) ) <-> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) ) |
| 33 |
27 32
|
mpbid |
|- ( ( ph /\ A =/= 0 ) -> ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ ) |
| 34 |
33
|
rpreccld |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR+ ) |
| 35 |
34
|
rpcnd |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC ) |
| 36 |
|
divcnv |
|- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. CC -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
| 37 |
35 36
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ~~> 0 ) |
| 38 |
|
nnex |
|- NN e. _V |
| 39 |
38
|
mptex |
|- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V |
| 40 |
39
|
a1i |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
| 41 |
|
oveq2 |
|- ( n = k -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 42 |
|
eqid |
|- ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) = ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) |
| 43 |
|
ovex |
|- ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. _V |
| 44 |
41 42 43
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 45 |
44
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) = ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 46 |
34
|
rpred |
|- ( ( ph /\ A =/= 0 ) -> ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR ) |
| 47 |
|
nndivre |
|- ( ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) e. RR /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
| 48 |
46 47
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) e. RR ) |
| 49 |
45 48
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) e. RR ) |
| 50 |
|
oveq2 |
|- ( n = k -> ( ( abs ` A ) ^ n ) = ( ( abs ` A ) ^ k ) ) |
| 51 |
|
eqid |
|- ( n e. NN |-> ( ( abs ` A ) ^ n ) ) = ( n e. NN |-> ( ( abs ` A ) ^ n ) ) |
| 52 |
|
ovex |
|- ( ( abs ` A ) ^ k ) e. _V |
| 53 |
50 51 52
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 54 |
53
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 55 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 56 |
|
rpexpcl |
|- ( ( ( abs ` A ) e. RR+ /\ k e. ZZ ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
| 57 |
25 55 56
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) e. RR+ ) |
| 58 |
54 57
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR+ ) |
| 59 |
58
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) e. RR ) |
| 60 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 61 |
|
rpmulcl |
|- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. RR+ /\ k e. RR+ ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
| 62 |
33 60 61
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR+ ) |
| 63 |
62
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR ) |
| 64 |
|
peano2re |
|- ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) e. RR -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
| 65 |
63 64
|
syl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) e. RR ) |
| 66 |
|
rpexpcl |
|- ( ( ( 1 / ( abs ` A ) ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
| 67 |
29 55 66
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR+ ) |
| 68 |
67
|
rpred |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) e. RR ) |
| 69 |
63
|
lep1d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) ) |
| 70 |
30
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( 1 / ( abs ` A ) ) e. RR ) |
| 71 |
9
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> k e. NN0 ) |
| 72 |
29
|
rpge0d |
|- ( ( ph /\ A =/= 0 ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( 1 / ( abs ` A ) ) ) |
| 74 |
|
bernneq2 |
|- ( ( ( 1 / ( abs ` A ) ) e. RR /\ k e. NN0 /\ 0 <_ ( 1 / ( abs ` A ) ) ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
| 75 |
70 71 73 74
|
syl3anc |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) + 1 ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
| 76 |
63 65 68 69 75
|
letrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( ( 1 / ( abs ` A ) ) ^ k ) ) |
| 77 |
25
|
rpcnne0d |
|- ( ( ph /\ A =/= 0 ) -> ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) ) |
| 78 |
|
exprec |
|- ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 79 |
78
|
3expa |
|- ( ( ( ( abs ` A ) e. CC /\ ( abs ` A ) =/= 0 ) /\ k e. ZZ ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 80 |
77 55 79
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( abs ` A ) ) ^ k ) = ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 81 |
76 80
|
breqtrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) <_ ( 1 / ( ( abs ` A ) ^ k ) ) ) |
| 82 |
62 57 81
|
lerec2d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
| 83 |
33
|
rpcnne0d |
|- ( ( ph /\ A =/= 0 ) -> ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) ) |
| 84 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 85 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 86 |
84 85
|
jca |
|- ( k e. NN -> ( k e. CC /\ k =/= 0 ) ) |
| 87 |
|
recdiv2 |
|- ( ( ( ( ( 1 / ( abs ` A ) ) - 1 ) e. CC /\ ( ( 1 / ( abs ` A ) ) - 1 ) =/= 0 ) /\ ( k e. CC /\ k =/= 0 ) ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
| 88 |
83 86 87
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) = ( 1 / ( ( ( 1 / ( abs ` A ) ) - 1 ) x. k ) ) ) |
| 89 |
82 88
|
breqtrrd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( abs ` A ) ^ k ) <_ ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / k ) ) |
| 90 |
89 54 45
|
3brtr4d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) <_ ( ( n e. NN |-> ( ( 1 / ( ( 1 / ( abs ` A ) ) - 1 ) ) / n ) ) ` k ) ) |
| 91 |
58
|
rpge0d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. NN ) -> 0 <_ ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) ) |
| 92 |
3 22 37 40 49 59 90 91
|
climsqz2 |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) |
| 93 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 94 |
6
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) e. _V ) |
| 95 |
39
|
a1i |
|- ( ph -> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) e. _V ) |
| 96 |
9
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. NN0 ) |
| 97 |
96 13
|
syl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 98 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 99 |
1 9 98
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 100 |
97 99
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) e. CC ) |
| 101 |
|
absexp |
|- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 102 |
1 9 101
|
syl2an |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) |
| 103 |
97
|
fveq2d |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) = ( abs ` ( A ^ k ) ) ) |
| 104 |
53
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( ( abs ` A ) ^ k ) ) |
| 105 |
102 103 104
|
3eqtr4rd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ` k ) = ( abs ` ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) ) ) |
| 106 |
3 93 94 95 100 105
|
climabs0 |
|- ( ph -> ( ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 <-> ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) ) |
| 107 |
106
|
biimpar |
|- ( ( ph /\ ( n e. NN |-> ( ( abs ` A ) ^ n ) ) ~~> 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 108 |
92 107
|
syldan |
|- ( ( ph /\ A =/= 0 ) -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 109 |
21 108
|
pm2.61dane |
|- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |