| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divrec |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 2 |
1
|
3expb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 3 |
2
|
3adant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
| 4 |
3
|
oveq1d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A x. ( 1 / B ) ) ^ N ) ) |
| 5 |
|
reccl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / B ) e. CC ) |
| 6 |
|
mulexp |
|- ( ( A e. CC /\ ( 1 / B ) e. CC /\ N e. NN0 ) -> ( ( A x. ( 1 / B ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) ) |
| 7 |
5 6
|
syl3an2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A x. ( 1 / B ) ) ^ N ) = ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) ) |
| 8 |
|
simp2l |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> B e. CC ) |
| 9 |
|
simp2r |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> B =/= 0 ) |
| 10 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> N e. ZZ ) |
| 12 |
|
exprec |
|- ( ( B e. CC /\ B =/= 0 /\ N e. ZZ ) -> ( ( 1 / B ) ^ N ) = ( 1 / ( B ^ N ) ) ) |
| 13 |
8 9 11 12
|
syl3anc |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( 1 / B ) ^ N ) = ( 1 / ( B ^ N ) ) ) |
| 14 |
13
|
oveq2d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) = ( ( A ^ N ) x. ( 1 / ( B ^ N ) ) ) ) |
| 15 |
|
expcl |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
| 16 |
15
|
3adant2 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
| 17 |
|
expcl |
|- ( ( B e. CC /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
| 18 |
17
|
adantlr |
|- ( ( ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
| 19 |
18
|
3adant1 |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) e. CC ) |
| 20 |
|
expne0i |
|- ( ( B e. CC /\ B =/= 0 /\ N e. ZZ ) -> ( B ^ N ) =/= 0 ) |
| 21 |
8 9 11 20
|
syl3anc |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( B ^ N ) =/= 0 ) |
| 22 |
16 19 21
|
divrecd |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) / ( B ^ N ) ) = ( ( A ^ N ) x. ( 1 / ( B ^ N ) ) ) ) |
| 23 |
14 22
|
eqtr4d |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A ^ N ) x. ( ( 1 / B ) ^ N ) ) = ( ( A ^ N ) / ( B ^ N ) ) ) |
| 24 |
4 7 23
|
3eqtrd |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |