Metamath Proof Explorer


Theorem expdivd

Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
mulexpd.2
|- ( ph -> B e. CC )
sqdivd.3
|- ( ph -> B =/= 0 )
expdivd.3
|- ( ph -> N e. NN0 )
Assertion expdivd
|- ( ph -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 mulexpd.2
 |-  ( ph -> B e. CC )
3 sqdivd.3
 |-  ( ph -> B =/= 0 )
4 expdivd.3
 |-  ( ph -> N e. NN0 )
5 expdiv
 |-  ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) )
6 1 2 3 4 5 syl121anc
 |-  ( ph -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) )