Description: Nonnegative integer exponentiation of a quotient. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | |- ( ph -> A e. CC ) |
|
| mulexpd.2 | |- ( ph -> B e. CC ) |
||
| sqdivd.3 | |- ( ph -> B =/= 0 ) |
||
| expdivd.3 | |- ( ph -> N e. NN0 ) |
||
| Assertion | expdivd | |- ( ph -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | |- ( ph -> A e. CC ) |
|
| 2 | mulexpd.2 | |- ( ph -> B e. CC ) |
|
| 3 | sqdivd.3 | |- ( ph -> B =/= 0 ) |
|
| 4 | expdivd.3 | |- ( ph -> N e. NN0 ) |
|
| 5 | expdiv | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) /\ N e. NN0 ) -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |
|
| 6 | 1 2 3 4 5 | syl121anc | |- ( ph -> ( ( A / B ) ^ N ) = ( ( A ^ N ) / ( B ^ N ) ) ) |