Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 1 -> ( A ^ j ) = ( A ^ 1 ) ) |
2 |
1
|
eqeq1d |
|- ( j = 1 -> ( ( A ^ j ) = 0 <-> ( A ^ 1 ) = 0 ) ) |
3 |
2
|
bibi1d |
|- ( j = 1 -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) |
4 |
3
|
imbi2d |
|- ( j = 1 -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) ) |
5 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
6 |
5
|
eqeq1d |
|- ( j = k -> ( ( A ^ j ) = 0 <-> ( A ^ k ) = 0 ) ) |
7 |
6
|
bibi1d |
|- ( j = k -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) |
8 |
7
|
imbi2d |
|- ( j = k -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) ) |
9 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
10 |
9
|
eqeq1d |
|- ( j = ( k + 1 ) -> ( ( A ^ j ) = 0 <-> ( A ^ ( k + 1 ) ) = 0 ) ) |
11 |
10
|
bibi1d |
|- ( j = ( k + 1 ) -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) |
12 |
11
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
13 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
14 |
13
|
eqeq1d |
|- ( j = N -> ( ( A ^ j ) = 0 <-> ( A ^ N ) = 0 ) ) |
15 |
14
|
bibi1d |
|- ( j = N -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
16 |
15
|
imbi2d |
|- ( j = N -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) ) |
17 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
18 |
17
|
eqeq1d |
|- ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) |
19 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
20 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
21 |
20
|
eqeq1d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) x. A ) = 0 ) ) |
22 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
23 |
|
simpl |
|- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
24 |
22 23
|
mul0ord |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( A ^ k ) x. A ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
25 |
21 24
|
bitrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
26 |
19 25
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
27 |
|
biimp |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ k ) = 0 -> A = 0 ) ) |
28 |
|
idd |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( A = 0 -> A = 0 ) ) |
29 |
27 28
|
jaod |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) -> A = 0 ) ) |
30 |
|
olc |
|- ( A = 0 -> ( ( A ^ k ) = 0 \/ A = 0 ) ) |
31 |
29 30
|
impbid1 |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) <-> A = 0 ) ) |
32 |
26 31
|
sylan9bb |
|- ( ( ( A e. CC /\ k e. NN ) /\ ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) |
33 |
32
|
exp31 |
|- ( A e. CC -> ( k e. NN -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
34 |
33
|
com12 |
|- ( k e. NN -> ( A e. CC -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
35 |
34
|
a2d |
|- ( k e. NN -> ( ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
36 |
4 8 12 16 18 35
|
nnind |
|- ( N e. NN -> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
37 |
36
|
impcom |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |