| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( j = 1 -> ( A ^ j ) = ( A ^ 1 ) ) |
| 2 |
1
|
eqeq1d |
|- ( j = 1 -> ( ( A ^ j ) = 0 <-> ( A ^ 1 ) = 0 ) ) |
| 3 |
2
|
bibi1d |
|- ( j = 1 -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) |
| 4 |
3
|
imbi2d |
|- ( j = 1 -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) ) ) |
| 5 |
|
oveq2 |
|- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
| 6 |
5
|
eqeq1d |
|- ( j = k -> ( ( A ^ j ) = 0 <-> ( A ^ k ) = 0 ) ) |
| 7 |
6
|
bibi1d |
|- ( j = k -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) |
| 8 |
7
|
imbi2d |
|- ( j = k -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) ) ) |
| 9 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
| 10 |
9
|
eqeq1d |
|- ( j = ( k + 1 ) -> ( ( A ^ j ) = 0 <-> ( A ^ ( k + 1 ) ) = 0 ) ) |
| 11 |
10
|
bibi1d |
|- ( j = ( k + 1 ) -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) |
| 12 |
11
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 13 |
|
oveq2 |
|- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
| 14 |
13
|
eqeq1d |
|- ( j = N -> ( ( A ^ j ) = 0 <-> ( A ^ N ) = 0 ) ) |
| 15 |
14
|
bibi1d |
|- ( j = N -> ( ( ( A ^ j ) = 0 <-> A = 0 ) <-> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
| 16 |
15
|
imbi2d |
|- ( j = N -> ( ( A e. CC -> ( ( A ^ j ) = 0 <-> A = 0 ) ) <-> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) ) |
| 17 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
| 18 |
17
|
eqeq1d |
|- ( A e. CC -> ( ( A ^ 1 ) = 0 <-> A = 0 ) ) |
| 19 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 20 |
|
expp1 |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) x. A ) = 0 ) ) |
| 22 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 23 |
|
simpl |
|- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
| 24 |
22 23
|
mul0ord |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( A ^ k ) x. A ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 25 |
21 24
|
bitrd |
|- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 26 |
19 25
|
sylan2 |
|- ( ( A e. CC /\ k e. NN ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> ( ( A ^ k ) = 0 \/ A = 0 ) ) ) |
| 27 |
|
biimp |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ k ) = 0 -> A = 0 ) ) |
| 28 |
|
idd |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( A = 0 -> A = 0 ) ) |
| 29 |
27 28
|
jaod |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) -> A = 0 ) ) |
| 30 |
|
olc |
|- ( A = 0 -> ( ( A ^ k ) = 0 \/ A = 0 ) ) |
| 31 |
29 30
|
impbid1 |
|- ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( ( A ^ k ) = 0 \/ A = 0 ) <-> A = 0 ) ) |
| 32 |
26 31
|
sylan9bb |
|- ( ( ( A e. CC /\ k e. NN ) /\ ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) |
| 33 |
32
|
exp31 |
|- ( A e. CC -> ( k e. NN -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 34 |
33
|
com12 |
|- ( k e. NN -> ( A e. CC -> ( ( ( A ^ k ) = 0 <-> A = 0 ) -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 35 |
34
|
a2d |
|- ( k e. NN -> ( ( A e. CC -> ( ( A ^ k ) = 0 <-> A = 0 ) ) -> ( A e. CC -> ( ( A ^ ( k + 1 ) ) = 0 <-> A = 0 ) ) ) ) |
| 36 |
4 8 12 16 18 35
|
nnind |
|- ( N e. NN -> ( A e. CC -> ( ( A ^ N ) = 0 <-> A = 0 ) ) ) |
| 37 |
36
|
impcom |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) = 0 <-> A = 0 ) ) |