| Step | Hyp | Ref | Expression | 
						
							| 1 |  | expfac.f |  |-  F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) | 
						
							| 2 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 3 |  | 0zd |  |-  ( A e. CC -> 0 e. ZZ ) | 
						
							| 4 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 5 | 4 | mptex |  |-  ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) e. _V | 
						
							| 6 | 1 5 | eqeltri |  |-  F e. _V | 
						
							| 7 | 6 | a1i |  |-  ( A e. CC -> F e. _V ) | 
						
							| 8 | 1 | efcllem |  |-  ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 9 |  | oveq2 |  |-  ( n = m -> ( A ^ n ) = ( A ^ m ) ) | 
						
							| 10 |  | fveq2 |  |-  ( n = m -> ( ! ` n ) = ( ! ` m ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( n = m -> ( ( A ^ n ) / ( ! ` n ) ) = ( ( A ^ m ) / ( ! ` m ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. CC /\ m e. NN0 ) -> m e. NN0 ) | 
						
							| 13 |  | eftcl |  |-  ( ( A e. CC /\ m e. NN0 ) -> ( ( A ^ m ) / ( ! ` m ) ) e. CC ) | 
						
							| 14 | 1 11 12 13 | fvmptd3 |  |-  ( ( A e. CC /\ m e. NN0 ) -> ( F ` m ) = ( ( A ^ m ) / ( ! ` m ) ) ) | 
						
							| 15 | 14 13 | eqeltrd |  |-  ( ( A e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) | 
						
							| 16 | 2 3 7 8 15 | serf0 |  |-  ( A e. CC -> F ~~> 0 ) |