Step |
Hyp |
Ref |
Expression |
1 |
|
expfac.f |
|- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
|
0zd |
|- ( A e. CC -> 0 e. ZZ ) |
4 |
|
nn0ex |
|- NN0 e. _V |
5 |
4
|
mptex |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) e. _V |
6 |
1 5
|
eqeltri |
|- F e. _V |
7 |
6
|
a1i |
|- ( A e. CC -> F e. _V ) |
8 |
1
|
efcllem |
|- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
9 |
|
oveq2 |
|- ( n = m -> ( A ^ n ) = ( A ^ m ) ) |
10 |
|
fveq2 |
|- ( n = m -> ( ! ` n ) = ( ! ` m ) ) |
11 |
9 10
|
oveq12d |
|- ( n = m -> ( ( A ^ n ) / ( ! ` n ) ) = ( ( A ^ m ) / ( ! ` m ) ) ) |
12 |
|
simpr |
|- ( ( A e. CC /\ m e. NN0 ) -> m e. NN0 ) |
13 |
|
eftcl |
|- ( ( A e. CC /\ m e. NN0 ) -> ( ( A ^ m ) / ( ! ` m ) ) e. CC ) |
14 |
1 11 12 13
|
fvmptd3 |
|- ( ( A e. CC /\ m e. NN0 ) -> ( F ` m ) = ( ( A ^ m ) / ( ! ` m ) ) ) |
15 |
14 13
|
eqeltrd |
|- ( ( A e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
16 |
2 3 7 8 15
|
serf0 |
|- ( A e. CC -> F ~~> 0 ) |